Holomorphic Vertex Operator Algebras of Small Central Charge

نویسندگان

  • Chongying Dong
  • Geoffrey Mason
چکیده

We provide a rigorous mathematical foundation to the study of strongly rational, holomorphic vertex operator algebras V of central charge c = 8, 16 and 24 initiated by Schellekens. If c = 8 or 16 we show that V is isomorphic to a lattice theory corresponding to a rank c even, self-dual lattice. If c = 24 we prove, among other things, that either V is isomorphic to a lattice theory corresponding to a Niemeier lattice or the Leech lattice, or else the Lie algebra on the weight one subspace V1 is semisimple (possibly 0) of Lie rank less than 24.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Vertex Operator Algebras and the Effective Central Charge

We establish that the Lie algebra of weight one states in a (strongly) rational vertex operator algebra is reductive, and that its Lie rank l is bounded above by the effective central charge c̃. We show that lattice vertex operator algebras may be characterized by the equalities c̃ = l = c, and in particular holomorphic lattice theories may be characterized among all holomorphic vertex operator a...

متن کامل

Holomorphic Vertex Operator Algebras of Small Central Charges

We provide a rigorous mathematical foundation to the study of strongly rational, holomorphic vertex operator algebras V of central charge c = 8, 16 and 24 initiated by Schellekens. If c = 8 or 16 we show that V is isomorphic to a lattice theory corresponding to a rank c even, self-dual lattice. If c = 24 we prove, among other things, that either V is isomorphic to a lattice theory corresponding...

متن کامل

Deformation of central charges, vertex operator algebras whose Griess algebras are Jordan algebras

If a vertex operator algebra V = ⊕n=0Vn satisfies dimV0 = 1, V1 = 0, then V2 has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set Symd(C) of symmetric matrices of degree d becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, cen...

متن کامل

Framed vertex operator algebras, codes and the moonshine module

For a simple vertex operator algebra whose Virasoro element is a sum of commutative Virasoro elements of central charge 1 2 , two codes are introduced and studied. It is proved that such vertex operator algebras are rational. For lattice vertex operator algebras and related ones, decompositions into direct sums of irreducible modules for the product of the Virasoro algebras of central charge 1 ...

متن کامل

Z 3 Symmetry and W 3 Algebra in Lattice Vertex Operator Algebras

The vertex operator algebras associated with positive definite even lattices afford a large family of known examples of vertex operator algebras. An isometry of the lattice induces an automorphism of the lattice vertex operator algebra. The subalgebra of fixed points of an automorphism is the so-called orbifold vertex operator algebra. In this paper we deal with the case where the lattice L = √...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004